Hello £¡ Cart  Welcome to Molybdenum disulfide suppliers Exploiter Molybdenum Co., Ltd
LANGUAGE:
  • Chinese
  • English
  • French
  • Japnese
  • German
  • visa
  • discover
  • amex
  • mastercard
Working hours: Monday to Saturday 8:00 AM - 6: 00 PM
Molybdenum disulfide Free consultation hotline
:400-686-9523
Molybdenum disulfide Product Center
Molybdenum disulfide Online customer service
Company News

A sensitive electrochemical aptasensor based on palladium nanoparticles decorated graphene¨Cmolybdenum disulfide flower-like nanocomposites and enzymatic

Datetime:2016/7/14 20:32:10hit:10500

A sensitive electrochemical aptasensor based on palladium nanoparticles decorated graphene¨Cmolybdenum disulfide flower-like nanocomposites and enzymatic. In the present study, with the aggregated advantages of graphene and molybdenum disulfide (MoS2), we prepared poly(diallyldimethylammonium chloride)-graphene/molybdenum disulfide (PDDA-G-MoS2) nanocomposites with flower-like structure, large surface area and excellent conductivity. Furthermore, an advanced sandwich-type electrochemical assay for sensitive detection of thrombin (TB) was fabricated using palladium nanoparticles decorated PDDA-G-MoS2 (PdNPs/PDDA-G-MoS2) as nanocarriers, which were functionalized by hemin/G-quadruplex, glucose oxidase (GOD), and toluidine blue (Tb) as redox probes. The signal amplification strategy was achieved as follows: Firstly, the immobilized GOD could effectively catalyze the oxidation of glucose to gluconolactone, coupling with the reduction of the dissolved oxygen to H2O2. Then, both PdNPs and hemin/G-quadruplex acting as hydrogen peroxide (HRP)-mimicking enzyme could further catalyze the reduction of H2O2, resulting in significant electrochemical signal amplification. So the proposed aptasensor showed high sensitivity with a wide dynamic linear range of 0.0001 to 40nM and a relatively low detection limit of 0.062pM for TB determination. The strategy showed huge potential of application in protein detection and disease diagnosis. Copyright 2014 Elsevier B.V. All rights reserved.